Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion.
نویسندگان
چکیده
The main function of the photosynthetic process is to capture solar energy and to store it in the form of chemical 'fuels'. Increasingly, the photosynthetic machinery is being used for the production of biofuels such as bio-ethanol, biodiesel and bio-H2. Fuel production efficiency is directly dependent on the solar photon capture and conversion efficiency of the system. Green algae (e.g. Chlamydomonas reinhardtii) have evolved genetic strategies to assemble large light-harvesting antenna complexes (LHC) to maximize light capture under low-light conditions, with the downside that under high solar irradiance, most of the absorbed photons are wasted as fluorescence and heat to protect against photodamage. This limits the production process efficiency of mass culture. We applied RNAi technology to down-regulate the entire LHC gene family simultaneously to reduce energy losses by fluorescence and heat. The mutant Stm3LR3 had significantly reduced levels of LHCI and LHCII mRNAs and proteins while chlorophyll and pigment synthesis was functional. The grana were markedly less tightly stacked, consistent with the role of LHCII. Stm3LR3 also exhibited reduced levels of fluorescence, a higher photosynthetic quantum yield and a reduced sensitivity to photoinhibition, resulting in an increased efficiency of cell cultivation under elevated light conditions. Collectively, these properties offer three advantages in terms of algal bioreactor efficiency under natural high-light levels: (i) reduced fluorescence and LHC-dependent heat losses and thus increased photosynthetic efficiencies under high-light conditions; (ii) improved light penetration properties; and (iii) potentially reduced risk of oxidative photodamage of PSII.
منابع مشابه
Strategies for Optimizing Algal Biology for Enhanced Biomass Production
*Correspondence: Richard T. Sayre, Los Alamos National Laboratory, New Mexico Consortium, 100 Entrada Dr, Los Alamos, NM 87544, USA e-mail: rsayre@newmexico consortium.org One of the most environmentally sustainable ways to produce high-energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combust...
متن کاملWhat is the maximum efficiency with which photosynthesis can convert solar energy into biomass?
Photosynthesis is the source of our food and fiber. Increasing world population, economic development, and diminishing land resources forecast that a doubling of productivity is critical in meeting agricultural demand before the end of this century. A starting point for evaluating the global potential to meet this goal is establishing the maximum efficiency of photosynthetic solar energy conver...
متن کاملFrom first generation biofuels to advanced solar biofuels
Roadmaps towards sustainable bioeconomy, including the production of biofuels, in many EU countries mostly rely on biomass use. However, although biomass is renewable, the efficiency of biomass production is too low to be able to fully replace the fossil fuels. The use of land for fuel production also introduces ethical problems in increasing the food price. Harvesting solar energy by the photo...
متن کاملEfficiency of solar energy conversion as a function of light intensity*
The kinetic model has been developed for disserting the efficiency of solar energy conversion as a function of light intensity. A comparison of theory with experimental results shows that the model provides a satisfactory agreement. We have estimated the essential parameters of photosynthetic systems (the size of the photosynthetic antenna, the rate of electron transport, the correlation betwee...
متن کاملSpectral conversion of light for enhanced microalgae growth rates and photosynthetic pigment production.
The effect of light conditions on the growth of green algae Chlorella vulgaris and cyanobacteria Gloeothece membranacea was investigated by filtering different wavelengths of visible light and comparing against a model daylight source as a control. Luminescent acrylic sheets containing violet, green, orange or red dyes illuminated by a solar simulator produced the desired wavelengths of light f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant biotechnology journal
دوره 5 6 شماره
صفحات -
تاریخ انتشار 2007